This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 668995.

CONTACT:
Muhammad Mahtab Alam, holder of the COEL ERA-Chair
muhammad.alam@ttu.ee

Alvar Kurrel, project coordinator
alvar.kurrel@ttu.ee

Thomas Johann Seebeck Department of Electronics
School of Information Technologies
Tallinn University of Technology, Estonia

Project website: www.ttu.ee/coel
PURPOSE

One of the key objectives for T.J. Seebeck Department of Electronics ELIN in establishing an ERA Chair is to increase cooperation and enhance visibility, both domestically and in the European context.

The ERA Chair will enhance close cooperation with outstanding European research partner organizations in the same S&T domain or in complementary fields, and when appropriate with industry and SMEs from the local, national or European landscape.

One of the key drivers for T.J. Seebeck Department of Electronics to foster the ERA chair is the identified need to be at the forefront of strategic developments inside Estonia and EU, to play an active role in the development of future emerging technologies, and thereby actively support success of both local and EU economy and science.

The ERA chair will support increased cooperation between private and public sectors, increase awareness of the local and European businesses of technological opportunities, and foster science and education in exciting new areas.

COLLABORATIONS

- MARTA RENCZ, Budapest University of Technology and Economics, Hungary
- FRANCOIS VERDIER and BENOIT MIRAMOND, Université de Nice Sophia Antipolis, France
- ØRJAN GRØTTEM MARTINSEN, University of Oslo, Norway
- JEAN-PHILIPPE DIGUET, Université Bretagne Sud, France
- YU-CHENG FAN, National Taipei University of Technology, Taiwan
- LUCA REGGIANI, Polytechnic University of Milan, Italy
- RIZWAN AHMAD, National University of Science and Technology, Pakistan

RESEARCH

Sensor Signal Processing
- Compressed sensing
- Sparse digital signal processing
- Approximate computing
- Transient computing
- Embedded deep learning

Internet of Everything
- Wearable Wireless Networks
- Device-to-device Communication
- Body-to-body communication
- Coexistence

Sensors and Lab-on-Chip
- Point-of-Care
- Microfluidics
- Biosensing
- (Bio) electrical impedance spectroscopy